
N-list based Friend Recommendation System 
Using Pre-rule Checking 

Anil K.R 
Research Scholar School of Computer Science 

Mahatma Gandhi University 
Kottayam, Kerala, India 

Gladston Raj S 
Head, Department of Computer Science 

Government College, Nedumangad 
Thiruvananthapurm, Kerala, India 

I. ABSTRACT. 
The web friend recommendation system is the emerging trend 
in the social network and e-commerce. It plays an important 
role in the web based applications. The frequent pattern 
mining is one of the techniques used in mining applications 
and N-list is the efficient data structure representation used 
with this. The data pruning strategy is always been a 
challenge on improving the efficiency of N-list based system. 
In this paper we present a pre-rule based N-list which explore 
the power of association rule mining with pre-rule checked N-
list. This technique enhances the speed and efficiency of the 
friend recommendation system. 

Keywords: N-lists,Pre Post Code Tree 

2. INTRODUCTION

Data Analyticalsystems are playing pivotal roles in fine-
tuning goals such as improving customer retention, product 
recommendations and community specific profle 
recommendations. In most cases, these insights are driven 
by analyses of historic data.  The recomendations are 
commonly conducted based on topic modelling, which 
strictly relies with semantic meaning and statistical 
frequencies. The concept of recommendations has 
improved much with the introduction of frequent pattern 
mining for large databases of social circle data. The 
frequent pattern based operataions works on transaction 
records, is of great interest in data mining and knowledge 
discovery since its inception in 1993, by Agrawal et al. 
The present paper focus on a novel algorithm, NList based 
Prerule Checking, which is an extension of frequent pattern 
tree algorithm. The algorithm is experimentally proved 
with the implementation of a Web based friend 
recommendation system. 

3. N-LIST

N-list is data structure proposed to represent frequent 
patterns. The ability to mine patterns along the N-list nodes 
are made possible by maintaining a subset concept. N-list 
have a property called single path property which helps to 
mine data in a faster way. 
Recently proposed Pre-Post Code Tree algorithm for 
mining FP based N-list structure and children parent 
equivalence pruning[1]is another high-performance 
technique for mining frequentitemsets. It employs N-list to 
represent itemsets and directly discovers frequent itemsets 
using a set enumeration search tree. 

4. DRAWBACKS OF N-LIST

Implementation of N-list may be in- appropriate in large 
data sets. 
The efficiency of Nlist based algorithms are challenged 
when the consumption of memory is high and the 
processing speed is low. Also low support features are 
always been generated in mined results, which caused 
unfavourable results. 

5. FREQUENT CLOSED PATTERNS[1]

Table 1: Shows the transaction set containing different 
number of items. 

Transaction Items
1 A,C,T,W
2 C,D,W
3 A,C,T,W
4 A,C,D,W
5 A,C,D,T,W,S
6 C,D,T,E

In the above transaction set each transaction contains a 
number of items. The support of the pattern X, denoted by 
σ(X),where x € I and I is the set of all items in DB, is the 
number of transactions containing all the items in X. A 
pattern with K items is called a k-pattern an Ii is the set of I-
patterns sorted in order of descending frequency. 
Consider the minSup (minimum support threshold) be a 
given threshold. A pattern X is called a frequent pattern if 
σ(X) ≥ minSup x n.A frequent pattern is called an FCP if 
none of its subset has the same support. 

6.PPC-TREE

The Pre – Post Code Tree is a tree structure like FP tree 
which is used to represents the frequent pattern[1]. The 
Node of the PPC hold five values they are 
n(Ni),f(Ni),childs(Ni),pre(Ni),post(Ni) which are the 
frequent I-patterns in Ii the frequency of this node,the set of 
child nodes associated with this node, the order  number of 
nodes when traversing the tree. 

In this section, we discussed the details of N-list pre 
post[3]. In a given transaction database .DB and threshold. 
The succinct version of DB is a database generated by 
deleting infrequent item sets. Therefore we can directly 
mine frequent items sets from the succinct version of DB 
instead of the DB. 

Anil K.R et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 338-341

www.ijcsit.com 338



Let us consider an example 
Table 2 Illustrates the order of items from item collection 
with in a transcationdatabase 

ID ITEM Order of Items 
1 a,f,g a,f 
2 a,b,c,e b,c,e,n 
3 b,c,e,i b,c,e 
4 b,c,e,h b,c,e 
5 b,c,d,e,f b,c,e,f 

 
The frequent I-item sets set F1={a,b,c,e,f}. Note that the 
last column is the succinct version. The node with (3,6) 
means that its pre-order is and post-order is 6, and the item 
name b, and count 4. 
 

7.WEB BASED FRIEND RECOMMENDATION SYSTEM 
The recommendation systems are gaining wide spread 
acceptance in social networking and e-commerce 
applications. User habits,search patterns, subscription 
information etc acts as an input of recommendation 
systems. There needs many approaches to tackling the 
information overload on web portals, when building friend 
recommendation models. There are stringent relations 
within the transaction and between transactions used with 
frequent data. Basic stages in making a web based friend 
recommendation system are stages (i) Formation of user or 
item neighbourhood stage (ii) Generation of top N-list with 
algorithms that construct a list. 
The Degree of sparsity however depends on the application 
type[2]. 
Stage (iii) Application of quality assessment using pre post 
method of the top N-list. 
Factors affecting the Web Based Friend Recommendation 
Model[2] 
 

8.SPARSITY 
The Sparsity is the most[2] important factor indata mining 
applications, which is caused by the missing data in 
datasets. In some applications, users rate sparcity as a 
negligible factor.But on large applications in Social media 
context, the data set has to become free from sparsity. The 
problem of sparsity is a complicated issue. Major studies 
are conducted in this issue for handling the missing values, 
to get dataset free from sparsity. 
 
 
 

9.SCALABILITY 
Scalability is also an important issue in the case of web 
based friend recommendation system because the real 
world application like Social Media needs correct and 
complete information to generate better results. Scalability 
allows the researcher to work with large item datasets 
quickly and efficiently. 
 

10.TRAIN DATA SET 
There is a clear dependence between training set size and 
accuracy of the algorithms [2]. So the size of the training is 
an important factor that determining the accuracy and 
efficiency of the algorithm. However the effect of over 
fitting is less significant compared to general classification 
problem [2]. On the basis of the experiments conducted, 
75% of the training data is selected as the adequate choice 
of input dataset.With the selected training set,we could 
establish the concepts easily and clearly. 
 

11.NEIGHBOURHOOD SIZE 
The formation of neighbourhood is another important 
measure to determine the accuracy of the algorithm. If the 
number of nearest neighbours is very small the accuracy is 
low [2]. If enough neighbours are present the prediction is 
correct.  
 

12.PROPOSED MODEL 
The proposed model consist of a frame work that may 
identify all frequent item sets from a ppc tree, then 
construct an N-list and apply a pruning strategy on data 
related to user activities. The user activities are mined to 
find frequent patterns and it generates friend 
recommendations.The proposedPrerule based N-listworks 
on a rule confidence and fitness function that decides the 
quality of recommendation. 

 
 
 

Anil K.R et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 338-341

www.ijcsit.com 339



Algorithm 1: Pre rule checking based N-list  
Generation[1] 
Input: Transaction database DB containing socialnetwork 

activity,minimum support S, minimum confidence 
C, fitness threshold. 

Step 1:  Scan DB to obtain frequent one  
item set and build PPC Tree 

Step 2:  Scan PPC Tree to generate N-list  
of one item set (activity)  

Step 3: Continue step 1 until item set i=1 to  
n, n is the last activity 

Step 4:  For each frequent item sets join the  
N-list using N-intersection (N-list,  
i=0....N) 

Step5: Build Pattern tree (node  
lost),candidate item, activity  
confidence) 

Step 6: Return frequent item set containing  
SN activity. 

 
Algorithm 2 (building pattern tree) 
Step 1: Inilizes node equivalent 
 Item =0 
 Node Child node =0 
 Net Candidate Item =0 
Step 2: For Each item in candidate set 
 Do 
Step 3: P1 = N0 Item set 
 P2 = i U (p1 – p1(1) 

P= i U (Pi) 
Step 4:  P.N list =NL-Intersection of             

(p1,P2) 
Step 5:  if P.support> S 
Step 6: Cj be the confidence of ith activity 
Step 7:  if Ci>c create a node Ndi 
 Repeat step 6 for (i = to n) 
Step8:  Calculate fitness function Φ = C(i) /  

support (i) 
Step 9: Build a pattern tree (Ndi,Next 

Candidate item, S,C)  if d>fitness  
threshold 

Step10: return FP tree 
 
Algorithm 3: NL-Intersection ( NL1,NL2) 
Input:NL1= 

((x11,y11):Z11),((x12,y12):z12),.....((x1m, Y1m) : 
z1m) and NL2 = (( x21, y21 ) : z21),  (x22 ,y22 ) : 
z22 ) , ...... ( x2n , y2n) : z2n ) , which are the N-
lists of P1= i U i1 i2 ....... i (k-2) and p2 = i V i1 
i2.... i (k-2 ) i U > iv ) respectively. 

 
Step 1: i=1; 
Step2: j=1 
Step 3: while (i<=m && j<=n) 
Step 4:  if (1i<x2j ) then 
Step 5:    if (y1i>y2j) then 
Step 6:      insert((x1i,y1i):z2j ) into NL3: 
Step 7:   j++ 
Step 8    else i++ 
Step 9:  else j++ 

Step10:   ptr1= NL3First_element 
Step11:  ptr2=ptr1.next_element 
Step 12:   while ptr1 is not the last element  

of NL3 do 
Step 13:  if ptr1.pre-code = ptr2.pre-code  

and ptr1.posr  and ptr1.post-code  
= ptr2.post-code 

Step 14  ptr1.count=ptr1.count + ptr2.count 
Step 15:  delete ptr2 from NL3 
Step 16:  ptr2= ptr1.next_element 
Step 17 : else  
Step 18:   ptr1=ptr2 
Step 19:   ptr2= ptr1.next_ekement 
Step 20  return NL3 
 

13.EVALUATION 
We have conducted experiments to evaluate the 
performance of the proposed algorithm and also analysis 
time complexity and computation complexity of the new 
system.Present algorithm is evaluated against an available 
FPGrowthalgorithm and found to be correct and 
thecompletenew system was applied on a 
friendrecommendation scenario using a social network data 
set. 
 

14.EXPERIMENTAL SETUP 
In this section, we evaluate the performance of theproposed 
algorithm. Summarizing the studies,we can conclude that 
the algorithm Pre rule checking based N-list generationis 
the state-of-the-art algorithm employing the level-wise 
approach, FP Tree. 
We compare it with the FP Tree pattern-growth approach 
and the data is implemented on social data set. All 
algorithms were written inC#.NETprogramming language. 
The configuration of the testing platform is as follows: 
Windows Operatingsystem, 2GB Memory, Intel(R) 
Core(TM) i3-2310 CPU @2.10 GHz; 
There are four parameters used to generate thefriend 
recommendation results, including the confidence 
threshold, fitness threshold, time for processing and the 
number of outputs recommended. 
We have used the following values as default 
throughempirical studies, i.e., the confidence threshold is 
set 20 to 60%, the fitness factor is set to 0.8, and the 
minimum number of attribute is to be recovered for 
recommendation is set to 5. 
Experimental Inference 
Table 3:Illustrates the Time inference for different 
algorithms -FP Growth and Prerule Based Algorithms 
under different confidence values 

Confidence 
FP 

Growth 
Pre rule 
Based 

Time Inference 
(Milli Second FP 

time) 
20 42 57 210 
30 39 51 232 
40 33 39 235 
50 27 37 239 
60 21 29 267 
90 12 15 311 

 

Anil K.R et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 338-341

www.ijcsit.com 340



A.Recommendation Precision Rp: 
Precision is referred as the ratio of the number of inferred 
friends to the number of actual friends, when a target query 
is processed over a dataset of user activities.. 

 
where j _ j denotes the number of elements in a set.The 
dominator is 1000 because Rpis the average of 1000 users 
in one experiment. The Precision factor is neared to 1, 
which is fine for the experiment. 
 
B.Recommendation Recall Rr: 
The average of the ratio of the number of recommended 
friends in the set of true friends of the query user over the 
number ofthe set of true friends of the query user, which is 
1000 in our experiments. 

 
The Precision factor is neared to 1, which is fine for the 
experiment. 
 

Fig.1 . No. of Users Generated  based on various  
Conf.Level 

 
 
C.Running Time Comparison 
In this subsection, we compare new algorithm and FP-
growth in terms of runtime. We have conducted substantial 
experiments spanning the datasets for various values of 
minimum confidence. Note that runtime here means the 
total execution time, which is the period between input and 
output. Figure 4 shows comparison of the running time the 
new algorithm based Friend recommendation system with 
FP growth based systems. 

 
Fig2. Running time comparison on variousalgorithms 

 

CONCLUSION 
The analysis of the newly developed algorithm has proven 
to be fine with an existing algorithm. The area of 
recommendation systems for ecommerce applications like 
product recommendation, friend recommendation and 
service recommendations are still facing problems with 
accuracy in results and performance time. These issues may 
be resolved up to an extend by using the Prerule checked 
N-list based systems. The evaluation results were proved 
quantitately, with values arrived as the precision and 
accuracy of the recommendation systems. The values are 
generated in a range of 0.8 to 1. The efficiency of the new 
algorithmis also trailed under different values of fitness 
threshold. Thus the Pre-rule checking based algorithm has 
succeeded in establishing an improvement in the precision 
of recommendation systems. 
 
The algorithm can be further enhanced to apply many 
features like Semantic analysis of the activity using any 
NLP Model, also the pattern equivalence features will help 
to improve the results. 
 

REFERENCES 
[1] Bay Vo, Tuong Le, FransCoenen&Tzung- PeiHong Mining Frequent 

ItemSets using N-list and subsume concept. 
[2]   Tuong Le, Bay Vo (2015) An N-list basedalgorithm for mining 

frequent closed patterns  
[3]   Zhi-Hong Deng, Sheng-Long Lv (2015) An efficient N-list based 

algorithm for miningfrequent item sets via children –parent 
Equivalence purning 

[4]  Aggarwal C.C,Li Y &wang (2009) Frequent Pattern Mining with 
uncertain data  In: SIGKDD,pp.29-38 

[5]  Agarwal R, &Srikant R (1994) Fast algorithm for mining association 
rule In:VLDB,pp 487-499 

[6]  Agarwal R,Lmielinski T Swami AN (1993)Mining Association rule 
between sets of items inlarge databases In: Proceedings of the 
SIGMOD’93, pp 207-216 

[7] Ayres J Gehrke JE Yui T Flannick j (2002)Sequential pattern mining 
using a bitmaprepresentation. In Proceedings of the SIGKDD’02. pp 
429-435 

[8]  Bernecker. T Kriegal, H Renz, M. Verhein, F, &Zuefle, A (2009) 
Probabilistic frequent item setmining in uncertain database 

[9] Baralis E, Cerquitelli T, Chiusano S (2010) Constrained Item set 
mining on a sequence of incoming data blocks In:Intell 
syst25(5):389-410 

[10] Deng Z,Fang. G, Wang Z Xu X(2009) Mining Erasable Item sets In 
Proceedings of the ICMLC’09. Pp67-73 

[11]  Dong J.Han M (2007)An efficient mining Frequent item set 
algorithm Knowl BasedSyst20:329-335 

[12] Han J, Pei J. Yin Y (2000) Mining frequent Patterns without 
candidate generation In:Proceedings of the SIGMODKDD’00.PP1-
12 

[13] Lucchese B, Orlando S, Perego R (2006) Fast and memory efficient 
mining of frequent item sets. IEEE Trans Knowl Data Eng.18(1):21-
34 

[14]  GrahneC.&Zhu J (2005)Fast Algorithm frequent item set using NC-
sets Expert systems with applications 39(4),4453-4463 

  

0

10

20

30

40

50

60

20 30 40 50 60 90

PreRule

FP Growth

0

100

200

300

400

20 30 40 50 60 90

FP Time

PreRule
time

Anil K.R et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 338-341

www.ijcsit.com 341




